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Many natural processes can be characterized by their scale-invariance property.
In this study, we present the results of potential multiple scalings in the long-
term heart rate data from young healthy adults subjected to normal daily activity.
Our approach is based on the direct check of the probabilistic structure of the
increment process. Results from fractional Brownian motion are compared and
the generating mechanism for multiple scaling is discussed in the context of scale-
invariance formalism.
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1 Introduction

Many physical processes are scale invariant, giving rise to renormalizable structure
and self-similarity in space and time. It is quite often that the renormalization
can be conducted at different scales with different scaling exponents, namely, a
multiple scaling property. Multiple scaling was observed in many natural phenom-
ena ranging from physical" 2,3,4 ,5,6 , biological7 ,8 ,9,10 , to economical systems,11,1 2.

When a multiplicative mechanism is involved in the dynamics, multifractal theory
can be used to characterize a (continuous) set of singularity exponents and the
(Hausdorff) dimension of their supports via a Legendre transformation. Successful

applications of the formalism revealed deep insights about many natural processes
such as the density profile in diffusion limited aggregates' 3",, the velocity and dis-
sipation fields in fully developed turbulence' 5 ,2' 3 , the money exchange index from
financial market",11,1 2 and network traffic5' 6 . In general, there is not an unified
theory for multiple scaling and, sometimes, only finite number of scaling exponents
can be ascertained. In this work, we will present such an example in the long-term
heart rate variability (HRV) from healthy young adults and discuss its generating
mechanism.

The study of HRV has continued to draw great interests in recent years. It is
of both fundamental and clinical importance. In particular, a "healthy" heart typ-
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ically shows a power-law like power spectrum 16 , which can imply scale invariance"
and "self-similarity" in the autonomous nervous system. Losing such variability
was found to correlate well with the mortality rate of heart diseased patients1 7 .

The variation in the HRV scaling has been discussed by a number of researchers
in the past 7,'8 10 . In particular, Peng et. al. developed the systematic method and
compared the power-law scalings in the very short time scale (a few heart beats)
with the "asymptotic" behaviour (above 1000 heart beats). Significant difference
was concluded in these widely separated time scales and the characteristic was

found sufficient to distinguish between the healthy subjects and patients with con-
gestive heart failurei°. Di Rienzo et. al. also noted the variation of the power-law
exponent of HRV in frequency, which in turns causes variations of the power-law
scaling of the blood pressure as well7 . Later, Viswanathan et. al. tackled the non-
uniformity of power law scaling between the healthy subjects and those with severe
heart disease from a point-process aspect' 8 . Again, the conclusion was drawn on
the distinguishability between the health and disease. In these previous studies,
multiple scaling within physiologically relevant range of healthy humans has not
been explored.

In this work, multiple scaling was studied based on the data increment process.
The increment process at various time lags enables us to focus on the local scale
invariance property of the data. The numerical method was developed and tested
on artificial time series with one- and multiple- scaling exponents and then applied
to the heart rate data set. We also compared with the existing methodology in
the literature and found noticeable difference in the result. This paper is organized
as follows. The main ideas and the numerical method are introduced in the next
section. The results of artificial time series and the evidence of multiple scaling
in heart rate data are presented in section 3. In the last section, the mechanism
generating the multiple scaling in HRV will be discussed in the context of scale
invariance formalism.

2 Extract Scale Invariance from the Probability Density Function

In this section, we will first recall the basic definition of scale invariance of a pro-
cess and then describe the numerical method to extract multiple scaling. Given a
time series, r(s), its scale invariance is defined by the family of probability density
functions of the increment, Ar(t; s) = r(t+ s) - r(s): for any A and a fixed constant
h, one has

fxt(n) = A-hft(A-hn) (1)

where ft denotes the probability density function of n _ Ar(t; s) and the constant
h is the scaling index or scaling exponent of r(s).

To study (1) numerically requires the assumption of stationarity. This appears
to hold in our application. When the increment is stationary, fj(n) can then be
estimated from the ensemble of {Ar(t; s), s = 1, 2, -. }. Due to the data fluctua-
tion, it was found more efficient to fit ft(n) with a specific form, say gt(n), than

aNote that power-law spectrum is only a necessary conditionis,
2
e.
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Figure 1. (a) The set Jf(T;h) plotted on the h - n plane for T = { 2 k, k = 0, 1, 2, 3} and
ho = 0.5, dark pixels: A/JI = 0, white pixels: iA/'I > 0, (b) p(T; h) vs. h plot. The family
of density functions used in this demonstration was ideal in that they have the Gaussian form:
{gt (n) = exp(-n•2 /2a(t)

2
)/- 2ir(t)2 , a(t) = Vi; t = 2 k, k = 0, 11}.

working directly with the histogram of Ar(t) in (1). For example, for the fractional
Brownian motion, a Gaussian form is assumed for gt(n). In this case, the maximum
likelihood method was used to minimize the likelihood function - log(Higt(ni)) in
order to extract the mean and variance of a Gaussian probability density function.
This approach is subjected to less bias comparing to, say, minimizing the L2 norm
between the histogram and gt(n) 21. After gt(n) is defined, (1) can be studied by
systematically varying n, A and ho values. Let

u(n,A;h) = fxt(n)
f,(-hn)'(2)

and denote the estimated slope, dlog(u)/dlog(A), as h'. r is said to be renormaliz-
able or is scale invariant with a scaling exponent h. if h' -'.J h0 .

The parameters used in the numerical experiment were t = 1, A E { 2 k,k =

0,..., 11} and h E {0.01 -k, k = 0,.., 100}. The estimated slope h' is in general
a function of n, h, and A. The range of A in which h' is estimated reveals the
time scale of the local scale invariance property of r(s). Once the parameters are
defined, we first construct, for a given h, AK(T; h) = {n, ih'(n, A; h) - hi < el with
e = 0.01 to keep the error between h' and h less less than 1%. Here, T denotes
the set of A's where the condition Ih' - hi < c is satisfied. For any given h and
T, AK contains the set of n's in which local scale invariance is defined. The scaling
interval of h' can thus be calculated by the logarithm of the ratio of the largest and
smallest A in T. For each h, (1) also contains an isolated solution (when the set
KV has only one element) which has no relevance in the current context (Fig. la).
Fortunately, these isolated solutions form a small set. Hence, given any T and h,

c(W; h) = IK(T; h)I, where I. Ireturns the number of elements at a specific h value,
will show a peak at the desired scaling exponent (Fig. 1b).
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Figure 2. (a) Typical RR-interval record (r(s) (sec) vs. s (x10 3 beat)), (b) the power spectral
density function of r(s) (in log-log scale). (c) histogram of Ar(t), t = 4 (in linear-log scale).

3 Numerical Evidence of Multiple Scaling in HRV

2.1 Experimental Procedure

Six young adults (average age: 25 yr, height: 173 cm, weight: 74 kg) participated in
the experiment. The subjects were allowed to conduct their normal daily activity.
The difference in the body surface potential was sampled at 1000 Hz for a period of
approximately 24 hours. The data was then down-loaded to a PC and a specialized
computer code was written to search for the QRS complex for each heart beat
with proper filtering for events such as skip-beat, PVC, and so on. The time span
between the successive contractions of the ventricles, measured as the RR-interval
(RRi), was finally extracted and used in the scale invariance analysis.

A representative day-time RRi data is shown in Fig. 2a. Scale invariance in the
RRi data may be implied by the power-law trend of the power spectrum (Fig. 2b).
But it is clear that a single power-law is not sufficient to describe the spectrum over
the full frequency range.

3.2 Numerical Results

Before applying the numerical method to the RRi data, we first tested it on the
fractional Brownian motion of scaling exponent h, = 0.26, 0.5, 0.78. Each artificial
time series had 40,000 samples and was generated by using the spectral method'9' 20 .
Fig. 3a shows a typical case of the set A( plotted on the h - T plane where T =

2kk = 1,2,..- Sometimes, it is useful to consider E p(T; h) over all T sets for a
given h. The result is shown in Fig. 3b where the scaling exponent is indicated at

the location of the peak. It is clear that the desired scaling exponents were captured
with good accuracy.

We next apply the spectral method to construct a two-exponent artificial time
series of 216 data points (Fig. 4a). The local scale invariance in the time series
was defined by the scaling exponent hI, = 0.26 for frequency below 0.0025Hz and

h,, = 0.78 above 0.0025Hz. Fig. 4d was plotted with Z/ (T; h) versus h and the
estimated h's were within 3% of the exact values. In Fig. 4c, we checked the
minimum time scale of the exponents, which is defined by the smallest element of
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Figure 3. (a) The set p on the h-T plane, dark pixels: I1 = 0, white pixels: It1 > 0 for ho = 0.78.
(b) Z p(T; h) vs. h for h, = 0.26,0.5,0.78.

the T set. This is obtained by constructing the set 77(T; h) where T is the smallest
A in the corresponding T set. The set iy shown on the h - log 2 (T) plane reveals the
minimum time scale from which the exponent is defined (Fig. 4c). For the artificial
time series, it was found that correct time scales of the exponent were captured:
i.e., the "fast" dynamics (above 0.0025Hz) of h, = 0.78 prevails in small A's and
the "slow" dynamics of h, = 0.26 at large A (see Fig. 4c caption).

To study the RRi data, the following form of probability density function was

assumed (based on Fig. ic):

g exp(-Iljn /) (4)

The RRi data of all the test subjects exhibit multiple scaling characteristics. In
what follows, we will present the evidence from a typical individual whose data has
been given in Fig. 2. In Fig. 5a, multiple peaks were seen from the Z/L vs. h
plot, indicating multiple scaling of HRV. At least five "significant" exponents were
identified (a ,- e in Fig. 5a). The minimum time scale of these exponents scattered
over the range of A = 21 to 2' (Fig. 5b). The inverse of this range covers the
"frequency" < 0.0039 (1/beat) to 0.5 (1/beat) in the power spectrum (Fig. 2b). In
this range, two linear regions of slopes C - -1.4 and -2.1 may be roughly defined.
Based on = = 1 + 2h, they match nicely to two of the peak locations h = 0.17 and
0.6 in Fig. 5a. The size of the scaling interval is shown by the set Af plotted on the
h - ITI plane (Fig. 5c). A wide range of scaling interval associated with the scaling
exponents found in Fig. 5a is again seen.

Finally, we compared our method with the detrend fluctuation analysis
(DFA),"° and found noticeable difference. In Fig. 6 shows the double-logarithmic
plot of the average variance versus the scaled window length. Only one exponent
can be ascertained here since the local scale invariance characteristics have been
averaged out in the process of DFA.
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Figure 4. (a) Two-time-scale artificial time series, (b) power spectral density of the time series:
the scaling exponents are ho = 0.26 for f < 0.0025Hz and h. = 0.78 for f > 0.0025Hz. (Note:

0.0025 = 2-s-6). The line segments have slops of -1.52 and -2.56, respectively. (c) The set r7
plotted on h - log2 (T) plane, dark pixels: 1771 = 0, white pixels: 1771 > 0. The scaling range for

h = 0.77 was captured for T < 27 and that for h = 0.27 for T = 27 2'. (d) E j(T; h) vs. h
plot.
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Figure 5. (a) E /p(T; h) vs. h plot. Identified peaks at h=0.17, 0.24, 0.31, 0.44, 0.6 are labeled as
a, b, c, d, e, respectively; (b) the set q plotted on h - log(T) plane, dark pixels: 1271 = 0 and white
pixels: 1771 > 0, (c) The set of A" plotted on h - log 2 (T) plane, dark pixels: IAf' = 0, white pixels:

I.,Vl > 0.

4 Discussion and Future Outlook

Numerical evidence of multiple scaling of HRV in physiologically relevant range
has been presented for the case of healthy young adults. The scale invariance was
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Figure 6. Detrend fluctuation analysis on the RRi data shown in Fig. 2a: averaged variance of
the detrend time series vs. window length plot on double logarithmic scales (symbol: 'o'). The
fitted line of slope - 1.05, suggesting h = 0.05, was shown as the solid line.

extracted based on the property of the family of RRi increment probability density
functions. This approach enables us to explore local scale invariance property in
the data. Although it is only a bit costlier in computation, details previously
unavailable from other global methods, such as the power spectral density function
or DFA, may be obtained. It should be noted that the current methodology is
not able to extract temporal structure of very short duration. When such a rare
event occurs, its characteristics will yield to that generated by the more "regular"
dynamics in the process of estimating the density function. What this work has
shown is that even the "regular" neuro-control of our cardiovascular system is rich
enough to encompass a wide range of time scales and scaling structures, i.e., multiple
scaling. Indeed, the process is very complex, as Hausdorff and Peng showed from
artificial time series that the "balance" of different inputs to the system is also
crucial to generate the 1/f scaling8 .

More detailed characterization of the density function (4) is underway and will
provide the insight of the generating mechanism of multiple scaling. For example,
the variation of the parameters a, /0 and y in (4) can imply self-similarity of the
individual density function at specific time lag (At). This in turns can lead to scale
invariant solution of (1) over finite n-interval. In particular, given a A E R and
n' C I,(At), assume the graph fxt(n) is self-similar in the interval In:

A'fA'nI) = f.dn). (5)

Since it can be written

f.t(n') = fxt(Ahn"), (6)

(5) implies

AAfxt(Arn') = AJhft(nh) (7)
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where n' = Ahn. Re-arranging terms in (7), one finds

Ah+Af(AhAn") = f(nr) (8)

which is of the same form as (1). Hence, (8) implies the existence of a new exponent
h + A. Substituting the newly found exponent into the scale invariance formalism
(1), even more can be revealed by following the same arguments. In general, we
found, when certain conditions are met, the number of exponents can "grow" as a
power-law by repeating (5) with all the exponents. However, the scaling interval
In also shrinks at the same time by a power-law, making most of the exponents
"unobservable 22

,, . We will report more details in a future publication.
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